|
Atomistry » Tungsten » Compounds » Sodium Tungstates | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomistry » Tungsten » Compounds » Sodium Tungstates » |
Sodium Tungstates
The anhydrous normal tungstate, Na2WO4, is prepared by the fusion method described for potassium tungstate, or by complete dehydration of the hydrates at 100° C. or over sulphuric acid. It may be obtained from the mineral wolframite by fusion with alkali as already described.
The anhydrous salt exists as white crystals, of density 4.1833 at 18.5° C. and 4.1743 at 20.5° C., which melt at 698° C. On heating it undergoes two transformations, the first with considerable development of heat, and finally boils. The transition temperatures between the polymorphic forms thus indicated have been determined from the cooling and heating curves as follows:
The binary systems Na2WO4 - Na2SiO3 and Na2WO4 - K2WO4, and the properties of aqueous solutions of the mixtures, have been investigated. The heat of formation of sodium tungstate has been found to be: Na2O + WO3 = Na2WO4 + 94,700 calories. The aqueous solution, which is alkaline, when allowed to crystallise at temperatures above 6° C., yields slender nacreous crystals of the dihydrate, Na2WO4.2H2O, in the form of rhombic bipyramidal scales, a:b:c = 0.8002:1:0.6470, of density 3.259 at 17.5° C. and 3.231 at 19° C. This hydrate is stable in the air, and it is in this form that the salt is generally used. When heated, it loses water at 200° C., becomes opaque, and finally melts. It dissolves readily in hot water, but may be precipitated by means of alcohol. The solution yields white tungstic acid on the addition of mineral acids. If the aqueous solution is allowed to crystallise at temperatures below 6° C., the decahydrate, Na2WO4.10H2O, is obtained. The solubility of sodium tungstate has been determined by Funk as follows:
These results are shown graphically in fig. The densities and refractive indices of solutions of various concentrations have been determined as follows:
The equivalent conductivities of solutions containing ½Na2WO4 in v litres at 25° C. are as follows:
The production of colloidal tungsten hydroxide by the electrolysis of a solution of sodium tungstate has already been described. If precautions are taken to prevent the sodium hydroxide formed at the cathode from reaching the anode, for example, by means of a porous partition, it is possible to prepare the paratungstate, or other complex tungstate, from the anode solution. The use of sodium tungstate has been recommended as a mordant, and it has been used as a fire-proofing material for flannelette, but owing to its solubility it cannot be considered satisfactory and it is not now used. Sodium ditungstate, Na2O.2WO3, may be obtained by fusing together tungstic anhydride and sodium hydroxide or sodium carbonate, the mixture containing lNa2O:2WO3. On cooling, long needles separate, which on prolonged heating with water dissolve, yielding an alkaline solution which contains metatungstate. The dihydrate, Na2O.2WO3. 2H2O, is described by Rammelsberg as a crystalline precipitate obtained by addition of hydrochloric acid to a solution of the normal tungstate. The hexahydrate, Na2O.2WO3.6H2O, is stated by Lefort to crystallise from a solution containing the normal tungstate (2 molecules) and acetic acid (1 molecule); von Knorre, however, could only obtain the paratungstate from such a solution. The hydrate, Na2O.2WO3.12H2O, has also been described. Sodium paratungstate is known commercially as "tungstate of soda" and may be prepared on a large scale by fusing wolframite with soda ash and lixiviating the fused mass. On nearly neutralising the boiling solution with hydrochloric acid and allowing to crystallise, large triclinic crystals of the salt separate. The salt may be formed in solution by any of the following methods:
Sodium tritungstate, Na2O.3WO3.4H2O, is prepared, according to Lefort, by gradually adding a concentrated solution of the ditungstate to a boiling 50 per cent, solution of acetic acid. On cooling, a white precipitate results which dissolves in water, and the solution on evaporation yields long prismatic crystals. The existence of a tritungstate is denied by Kantschew. Sodium tetratungstate, Na2O.4WO3, is obtained by the complete dehydration of sodium metatungstate, and is sometimes called "anhydrous sodium metatungstate." As will be seen, however, water is essential to the constitution of metatungstates. The salt may be obtained by heating the paratungstate and treating the residue with water. It is insoluble in water, but on prolonged heating with water at 120° C. it is converted into the metatungstate. Sodium pentatungstate, Na2O.5WO3, is obtained by fusing together sodium tungstate and tungstic anhydride (1:2), or by heating sodium paratungstate to incipient fusion and extracting the fused mass with water, when it remains in brilliant plates or scales which are only slightly soluble in water. Sodium hexatungstate, Na2O.6WO3.9H2O, is obtained according to Marignac by prolonged boiling of tungstic acid with sodium paratungstate. Ullik, by decomposing a solution of sodium metatungstate with hydrochloric or nitric acid and allowing the solution to evaporate, obtained large yellowish crystals of what he considered to be the octa-tungstate, Na2O.8WO3.12H2O, but Friedheim could not confirm his results, and Leontowitsch, using the reagents in different proportions, obtained crystals of the hexatungstate, of composition Na2O.6WO3.15H2O. The anhydrous octatungstate, Na2O.8WO3, was obtained by von Knorre by oxidation of fused metatungstate at a bright red heat, and extraction of the mass with water, when lustrous scales of the octatungstate remain. The relation of these higher acid salts to one another and to metatungstic acid has not yet been determined. The acid salts, 2Na2O.3WO3.7H2O and 3Na2O.8WO3.17H2O, have also been described. |
Last articlesZn in 9JPJZn in 9JP7 Zn in 9JPK Zn in 9JPL Zn in 9GN6 Zn in 9GN7 Zn in 9GKU Zn in 9GKW Zn in 9GKX Zn in 9GL0 |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |