Chemical elements
  Tungsten
    Isotopes
    Energy
    Production
    Preparation
    Application
    Physical Properties
    Chemical Properties
    Compounds
      Tungsten Hexafluoride
      Tungsten Oxyfluorides
      Tungsten Dichloride
      Double Chlorides of Trivalent Tungsten
      Tungsten Tetrachloride
      Tungsten Pentachloride
      Tungsten Hexachloride
      Tungsten Oxychlorides
      Tungsten Dibromide
      Tungsten Pentabromide
      Tungsten Hexabromide
      Tungsten Chlorobromides
      Tungsten Oxybromides
      Tungsten Di-iodide
      Tungsten Tetra-iodide
      Tungsten Dioxide
      Ditungsten Pentoxide
      Tungsten Trioxide
      Tungstic Acid
      Aluminium Tungstates
      Ammonium Tungstates
      Antimony Tungstates
      Barium Tungstates
      Normal Bismuth Tungstate
      Cadmium Tungstates
      Calcium Tungstates
      Cerium Tungstate
      Chromium Tungstates
      Cobalt Tungstates
      Copper Tungstates
      Indium Tungstate
      Iron Tungstates
      Lanthanum Tungstate
      Lead Tungstates
      Lithium Tungstates
      Magnesium Tungstates
      Manganese Tungstates
      Mercury Tungstates
      Neodymium Tungstate
      Nickel Tungstates
      Platinum Tungstates
      Potassium Tungstates
      Praseodymium Tungstate
      Rubidium Tungstates
      Samarium Tungstate
      Silver Tungstates
      Sodium Tungstates
      Strontium Tungstates
      Thallium Tungstates
      Tin Tungstates
      Uranium Tungstate
      Ytterbium Tungstates
      Yttrium Tungstate
      Zinc Tungstates
      Metatungstic Acid
      Ammonium Metatungstate
      Barium Metatungstate
      Cadmium Metatungstate
      Calcium Metatungstate
      Cerium Metatungstate
      Cobalt Metatungstate
      Lead Metatungstate
      Magnesium Metatungstate
      Mercurous Metatungstate
      Nickel Metatungstate
      Potassium Metatungstate
      Rubidium Metatungstate
      Samarium Metatungstate
      Silver Metatungstate
      Sodium Metatungstate
      Strontium Metatungstate
      Thallous Metatungstate
      Zinc Metatungstate
      Pertungstic Acid
      Tungsten Bronzes
      Potassium Tungsten Bronze
      Lithium Tungsten Bronze
      Lithium Potassium Tungsten Bronze
      Sodium tungsten bronzes
      Tungsten Disulphide
      Tungsten Trisulphide
      Thiotungstates
      Tungsten Diselenide
      Tungsten Triselenide
      Tungsten Phosphides
      Tungsten Diphosphide
      Tritungsten Tetraphosphide
      Tungsten Monophosphide
      Tungsten Subphosphide
      Phosphotungstic Acids
      12-Tungstophosphoric Acid
      11-Tungstophosphates
      21:2-Tungstophosphoric Acid
      10-Tungstophosphoric Acid
      9-Tungstophosphoric Acid
      17:2-Tungstophosphates
      3-Tungstophosphates
      Hypophosphotungstates
      Tungsten Diarsenide
      Tungsten Chloro-arsenide
      12-Tungsto-arsenates
      11-Tungsto-arsenates
      9-Tungsto-arsenic Acid
      17:2-Tungsto-arsenates
      Tungsto-arsenites
      Tritungsten Carbide
      Ditungsten Carbide
      Tungsten Monocarbide
      Tungsten Iron Carbides
      Tungstocyanic Acid
      Ammonium Tungstocyanide
      Calcium Tungstocyanide
      Cadmium Tungstocyanide
      Caesium Tungstocyanide
      Lead Tungstocyanide
      Magnesium Tungstocyanide
      Manganese Tungstocyanide
      Potassium Tungstocyanide
      Rubidium Tungstocyanide
      Silver Tungstocyanide
      Sodium Tungstocyanide
      Strontium Tungstocyanide
      Thallium Tungstocyanide
      Zinc Tungstocyanide
      Tungsticyanic Acid
      Tungsten Sesquisilicide
      Tungsten Disilicide
      Tungsten Trisilicide
      12-Tungstosilicic Acid
      Iso-12-tungstosilicic Acid
      10-Tungstosilicates
      Tungsten Boride
      12-Tungstoboric Acid
      Iso-12-tungstoboric Acid
    Alloys
    PDB 1aor-2rav
    PDB 2rb5-6fit

12-Tungstosilicic Acid, H8[Si(W2O7)6]






12-Tungstosilicic Acid, H8[Si(W2O7)6].xH2O, was first obtained by Marignac by decomposing the mercurous salt by means of hydrochloric acid, and allowing the resulting solution to slowly crystallise. It is more conveniently obtained by the method of Drechsel from concentrated aqueous solutions of its salts, by shaking out with ether after the addition of hydrochloric acid. At ordinary temperatures, large quadratic crystals of the 28-hydrate, H8[Si(W2O7)6].28H2O, are obtained. When these are heated above 33° C., or when the acid is allowed to crystallise from the warm solution, the 22-hydrate, H8[Si(W2O7)6].22H2O, which yields rhombohedral crystals, is formed. The actual transition point is 28.5° C. The 22-hydrate melts at 53° C. A 15-hydrate, H8[Si(W2O7)6].15H2O, separates in fine prisms when concentrated solutions of the acid are treated with fuming hydrochloric acid. The acid is readily soluble in water and in alcohol; it is extremely stable towards hydrolysis, and its solution may be used as a reagent for alkaloids with which it gives distinctive precipitates which are definite and stable compounds. The hydrogen-ion concentration in a 0.05 N solution of the acid is 2.9×10-3.

The basicity of 12-tungstosilicic acid, as indicated by the formula, appears to be 8, and normal alkali salts, for example, the potassium salt K8[Si(W2O7)6].14H2O, were described by Marignac. Subsequent investigators, however, could not verify Marignac's work, and showed that the products obtained by his method of preparation, namely, by saturation of solutions of the paratungstates with silicic acid gel, were salts of 10-tungstosilicic acid and not 12-tungstosilicates. The normal mercurous salt Hg8[Si(W2O7)6].5H2O, however, separates in pale yellow laminae when mercurous nitrate is added to a solution of the free acid.

The 12-tungstosilicates usually obtained correspond to the formula R4H4[Si(W2O7)6].xH2O. They may be prepared by the addition of mineral acid to a boiling solution containing alkali tungstate and silicate; by the addition of alkali silicofluoride to a solution of the corresponding tungstate, until the mixture no longer yields a precipitate of tungstic acid when treated with hydrochloric acid; by treating a solution of the free acid with a metallic carbonate; or by double decomposition. The salts crystallise readily, forming well-defined crystals, and each salt appears to form several well-defined hydrates; for example, the sodium salt Na4H4[Si(W2O7)6].18H2O is dimorphous, and hydrates containing 12H2O and 11H2O respectively are also known. The copper and chromium salts each yield three hydrates. The lithium, calcium, and barium salts yield hydrates which are isomorphous with the rhombohedral form of the free acid, thus:

H8[Si(W2O7)6].22H2O,
Li4H4[Si(W2O7)6].22H2O,
Ca2H4[Si(W2O7)6].22H2O,
Ba2H4[Si(W2O7)6].22H2O.

Isomorphism also exists between certain 12-tungstosilicates and certain metatungstates and borotungstates; for example, the following are isomorphous:

K6H4[H2(W2O7)6].16H2O,
K5H4[B(W2O7)6].16H2O,
K4H4[Si(W2O7)6].16H2O;
and also
Ba3H4[H2(W2O7)6].25H2O,
Ba2.5H4[B(W2O7)6].25H2O,
Ba2H4[Si(W2O7)6].25H2O.

The 12-tungstosilicates form stable double salts with nitrates; for example, 3Na4H4[Si(W2O7)6].4NaNO3.13H2O and Ca2H4[Si(W2O7)6].Ca(NO3)2.13H2O.

The acid salts, Na2H6[Si(W2O7)6].14H2O and K3H5[Si(W2O7)6].12H2O, have been obtained by the action of mineral acids on the ordinary 12-tungstosilicates.


© Copyright 2008-2012 by atomistry.com